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SELF-MODELING PARAMETER DISTRIBUTION BEHIND A DETONATION WAVE 

V. N. Okhitin UDC 534.222.2 

An analytic solution exists only in the planar case to the self-modeling problem of the 
parameter distribution behind a stationary detonation-wave front in a perfect gas [I]. Numer- 
ical solutions have been derived for waves of spherical and cylindrical symmetries by the 
use of various equations of state for detonation products DP [2-4]. There are also analytic 
approximations for the distributions behind the fronts of symmetrical detonation waves DW in 
condensed explosives [4, 5], which are interesting for use as initial conditions in solving 
more complex detonation problems. Numerical calculations show that the behavior of the DP 
from gaseous explosives [6] and condensed ones of various densities [4, 5] can be described 
quite accurately from the isentropic relation between the pressure p and density p for a 
perfect gas with various values of the adiabatic parameter y. It is therefore of interest 
to derive analytical relationships for the self-modeling parameter distribution behind a 
stationary DW front for various types of symmetry and for the equation of state for a per- 
fect gas whose adiabatic parameter varies over a wide range. Tight specifications are laid 
down for the analytic relationships on account of their use in numerical calculations. In 
particular, they should satisfy the asymptotic solutions in the region of the DW front and 
at the boundary with the central region at rest, and they should also describe the numerical 
solutions with sufficiently high accuracy. 

Here we derive analytic relations for the self-modeling parameter distribution behind 
a stationary DW front in the Chapman--Jouguet mode for various forms of symmetry satisfying 
these requirements. 

A system of ordinary differential equations in the self-modeling variable ~ = r/t de- 
scribes the parameter distribution behind a stationary DW front [7]: 

d u  c 2 dp 
d~ [ c~ = ' 

where p, u, and c are the density, mass velocity, and speed of sound, r and t are indepen- 
dent variables for the distance from the point of detonation initiation and time, and v is 
the symmetry parameter, which takes the values 0, I, and 2 correspondingly for planar, cylin- 
drical, and spherical DW. 

We introduce the dimensionless linear coordinate r/R, where R is the coordinate of the 
DW front, and use the fact that c % p(y-1)/2 for a perfect gas, whereupon the system can be 
reduced to 
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du [(Dr~R--u) 2 t]  wu Dr/R--u  du 2 dc 
d(r/t:l) c 2 .r/R' ~ d(r/R) ? - - i d ( r / I t  )' (1)  

where D = R/t is the DW front speed. 

In the planar case, v = 0, and it follows from the first equation in (I) that (Dr/R -- 
u)/c = I, so c = Dr/R-- U o 

From the second equation in (I) we get a known analytic solution for a planar DW: 

u = u2 -- 2(c2 -- c)/(? -- t ) ,  

w h e r e  t h e  s u b s c r i p t  2 r e l a t e s  t o  t h e  p a r a m e t e r  v a l u e s  a t  t h e  DW f r o n t .  

A l s o ,  u = 0 a t  t h e  b o u n d a r y  w i t h  t h e  c e n t r a l  r e g i o n  o f  s t a t i o n a r y  p a r a m e t e r s ,  and  t h e  
s p e e d  o f  s o u n d  t h e r e  i s  g i v e n  b y  

c a = c 2 -  (?-- f )uJ2.  

The b o u n d a r y  o f  t h e  r e g i o n  o f  r e s t  i s  a l i n e  o f  weak  d i s c o n t i n u i t y ,  so  on t h e  b a s i s  o f  
the detonation parameters [7] 

plD---- i- , u~ = D - - $ -  7 i--? 

we get as follows for the coordinate of the stationary zone in a planar DW: 

,, ,(,>) 
R --D- =-~ i+? . (2) 

Here p is pressur e and the subscripts I and 3 relate to the initial parameters of the medium 
ahead of the DW front and at the boundary of the region at rest. 

The second term in the parentheses in (2) is usually neglected because of its smallness, 
but it may be appreciable in a gas detonation. 

In a planar DW, the combination f = (Dr/R -- u)/c in (I) is equal to one and is indepen- 
dent of the properties of the DP, i.e., of the adiabatic parameter. One assumes that in the 
case of a symmetrical DW, this function will also not be dependent on u Numerical solutions 
have been derived for DW of various symmetries with adiabatic parameters varying from 1.1 to 
3, and these show that f(u) is almost independent of y. The form of the relationships is 
shown for various types of symmetry in Fig. I (v = 0, I, and 2 for lines I-3 correspondingly). 

In that case, it is not difficult to integrate the second equation in (I) with limits 
from the DW front to the boundary of the rest region, with ff(u)du calculated graphically, 
and thus to obtain an expression for the speed of sound in the stationary-parameter region 
cz = c2 - (y -- I)fu2/2. 

The mean values T in the cylindrical and spherical cases are 1.105 and 1.174 correspond- 
ingly, and for any type of symmetry the value is given closely by 

]-= (6v+i5)/(4v + i5) .  
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Then we have as follows for the stationary-region parameters: 

r3 c3 I [ 7--16v@t5 ] 
R - - - N - - - b - -  c2 ~ 4 v §  u~ 

or on the basis of the expressions for c2 and u2 

--F = - - i f =  v=o ? T I @ §  

where (rs/R)v= 0 is the radius of the stationary zone in the planar ease, which is defined by 
( 2 ) .  2 �9 As pz/pID is small, the latter expresszon can be rewritten as 

~ - = - F =  ~=o ~ T ] 4 ~  + t5 

Expre s s ion  (3) approx imates  the numer ica l  r e s u l t s  w i t h a n  accuracy  of about  0.5% t h r o u g h -  
out  the  range in 7. 

If f(u) is independent of y, it follows from the first equation in (I) that the mass- 
velocity distribution in the DW is also independent of the properties of the DP and can be 
represented as 

u / ~  = ~(F) ,  

where ~ = (r -- rs)/(R -- r3) is the dimensionless relative radius in the Taylor decompression 
wave behind the DW front, which varies from 0 to I. 

Figures 2 and 3 show numerical results for the spherical and cylindrical cases corre- 
spondingly in the form of mass-velocity distributions for DP for y = 1.1, 1.5, 2, 3 (points 
I-4 correspondingly). It is clear that the results lie virtually on the same curves for all 
these y. 

System (I) shows [2] that du/dr + ~ in the region of the DW front in the spherical and 
cylindrical cases, while du/dr = 0 as we approach the central stationary region, while all 
higher derivatives tend to infinity. All these conditions are satisfied by the function 

~) = u/u 2 ~ I -- (i -- r~)~ ~r I < ~ < 2andO < ~ < I. 

The numerical results enable one to select values for ~ and 5, which are 

= i . 0 5 ,  ~ = 2 /3  ~r  v : t ,  

g = i . l ,  ~ = t / 2  ~ r  v = 2 .  

The mass-velocity distributions constructed with these ~ and $ are shown by solid lines 
in Figs. 2, 3. 

With e = B = I, (~) leads to the known analytic solution for a planar DW. This enables 
us to suggest the following.relations for ~ and 6 for an arbitrary symmetry type: 

= ( 2 0 + ~ ) / 2 0 ,  ~ = 2 / @ ~ - 2 ) .  

Then we have the following general relationship for the velocity distribution in a stationary 
DW: 

u = u  2 1--  t--\~__---~a / ] ] ~r ra<~r~R. (4) 

Figure I shows that f(u) varies only slightly in DP [the maximum change in f(u) occurs 
in the spherical case and is about 20%]. Therefore, it can be considered as constant to a 
first approximation and equal to the mean value 2. Then we integrate the second equation in 
(I) with limits from r3 to the current radius r and from r3 to R to get 

This means that 

ufu~ = (c - @l(c~ - c~). 
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We then have the following approximate relation for the speed of sound in the DP on the basis 

of (4) : 

c=c3+(c2--c~)  1-- I - - \ ~ /  ~r r ~ r ~ 8 .  (5) 

The pressure and density of the DP are determined from the speed of sound via the isen- 
trope. The error in describing the numerical calculations is about I% for the most sensitive 
psrameter: the pressure. 

Therefore~ analytic relationships (2)-(5) describe the numerical solution with high 
accuracy for the distribution of the parameters behind a stationary detonation-wave front 
in a perfect gas and satisfy the asymptotes of the exact solution. 

I �9 
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DESCRIPTION OF SHOCK-WAVE PROCESSES IN A TWO-PHASE MEDIUM CONTAINING 

AN INCOMPRESSIBLE PHASE 

V. A. Vakhnenko and B. I. Palamarchuk UDC 532.5:532.593 

The motion of a two-phase medium is analogous to that of a perfect gas with a certain 
effective adiabatic parameter within the framework of the one-velocity model when the volume 
proportion of condensed phase is small [I-3]. If on the other hand no constraint is placed 
on the volume proportion, the basic hydrodynamic equations contain it as a variable addi- 
tional to those in the analogous gasdynamic equations. This substantially complicates solv- 
ing the nonstationary hydrodynamic equations and has led to the need to develop the methods 
given in [4, 5]. 

Here we propose a method of transforming the variables that leads to complete analogy 
between the equations for a perfect gas and those for a two-phase medium with any volume oc- 
cupied by the condensed phase. It is shown that the motion of a two-phase medium in the 
transformed coordinate system is completely analogous to that of a perfect gas, which means 
that the methods developed for perfect gases can be used to solve shock-wave problems. 

The scope for the method is demonstrated by reference to the strong explosion state in 
a two-phase medium. 

I. Basic Concepts. Consider a homogeneous two-phase medium consisting of condensed 
and gas phases uniformly distributed in the volume. We assume as follows: I) The condensed 
phase is incompressible, 2) the gas obeys the equation of state for a perfect gas with con- 

e 
stant values for the specific heats, 3) the partial pressure of the condensed phase is neg- 
ligibly small, 4) the speeds of the condensed phase and gas are equal, and 5) there is no 
reaction between the components. 
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